Stoichiometry, Free Energy, and Kinetic Aspects of Cytochrome c: Apaf-1 Binding in Apoptosis

Cherie Purring,[†] Hua Zou,[‡] Xiaodong Wang,[‡] and George McLendon*,*

> Department of Chemistry, Princeton University Princeton, New Jersey 08544 Department of Biochemistry, University of Texas SW Medical Center, Dallas, Texas 75235

Received April 19, 1999

A few years ago, what was called a "bizarre and unexpected"¹ discovery was made that cytochrome c, the paradigm for a small redox protein, also plays a major role in apoptosis. It has been shown that cytochrome c (Cc) along with ATP or dATP are necessary cofactors with apoptosis protease activating factor-1 (Apaf-1) for the activation of caspase-9.2-4 Caspases, a family of genetically conserved cysteine proteases, are key mediators of the execution phase of apoptosis.⁵ It has been indirectly inferred that cytochrome c forms a complex with Apaf-1, but until now the direct binding of cytochrome c has not been demonstrated, and neither the binding constant nor even the stoichiometry of binding were known.^{4,6}

The proposed mechanism for caspase-9 activation is that cytochrome c, upon its release from the mitochondria, binds to Apaf-1. When Apaf-1 binds to cytochrome c, the Apaf-1 caspase recruitment domain (CARD) is exposed, which is able to bind and activate caspase-9.3 We have taken the first step in characterizing this mechanism by showing that cytochrome c does, in fact, bind strongly to Apaf-1, apparently with a 2:1 Cc:Apaf-1 stoichiometry. Using fluorescence polarization methods we have measured the binding constant for Apaf-1 and horse heart ZnCc, a fluorescent derivative of Cc in which the heme iron is replaced by zinc. This species is known to be structurally equivalent to wild-type FeCc in binding to physiological protein partners of Cc.7

Cytochrome c is a small (\sim 12 kDa) protein. Consequently, its rotational correlation time is relatively fast on the time scale of fluorescence. Therefore, when its fluorescent derivative, ZnCc, is excited with a polarized light source, most of the molecules will rotate before fluorescence occurs and the measured polarization will be small.⁸ Apaf-1, on the other hand, is much larger $(\sim 130 \text{ kDa})$. Thus, when ZnCc is bound to Apaf-1, the complex rotates more slowly than does ZnCc alone, leading to a higher measured polarization ratio.

In our experiments, we performed fluorescence polarization titrations in which Apaf-1 was added to nanomolar concentrations of ZnCc and the change in polarization was monitored. Cc and Apaf-1 concentrations were measured by UV/visible absorbance. The extinction coefficient for ZnCc is $\epsilon_{585} = 7.9 \times 10^3 \text{ M}^{-1}$

- (2) Liu, X.; Kim, C. N.; Yang, J.; Jemmerson, R.; Wang, X. Cell 1996, 86, 147
- (3) Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad, M.; Alnemri, E. S.; Wang, X. Cell 1997, 91, 479.
- (4) Zou, H.; Henzel, W. J.; Liu, X.; Lutschg, A.; Wang, X. Cell 1997, 90, 405
 - (5) Thornberry, N. A. *Chem. Biol.* **1998**, *5*, R97.
 (6) Green, D. R. *Cell* **1998**, *94*, 695.

(7) (a) Vanderkooi, J. M.; Landesberg, R.; Hayden, G. W.; Owen, C. S. *Eur. J. Biochem.* **1977**, *81*, 339. (b) Moore, G. R.; Williams, R. J. P.; Chien, J. C. W. ; Dickson, L. C. *J. Inorg. Biochem.* **1980**, *12*, 1–15. (c) Anni, H.; Vanderkooi, J. M.; Mayne, L. **1995**, *34*, 5744.

Figure 1. Binding curve for ZnCc with Apaf-1. ZnCc concentration is 75 nM, and Apaf-1 was titrated in to a final concentration of \sim 150 nM. Fluorescence conditions: excitation = 550 nm, emission = 587 nm, polarization G value = 0.53. The sample was in 2 mL Buffer A⁹ at 30 $^{\circ}$ C.¹⁰ Free Apaf-1 concentration of 3.75 \times 10⁻⁸ M corresponds to 2:1 binding, and 7.50×10^{-8} M corresponds to 1:1 binding.

Figure 2. Change in P/P_0 versus time after a 1000-fold excess of FeCc was added to ZnCc bound to Apaf-1.

cm^{-1.11} The extinction coefficient for Apaf-1 was calculated to be $\epsilon_{280} = 1.85 \times 10^5 \text{ M}^{-1} \text{ cm}^{-1}$.¹² The data are best fit to a stoichiometric binding model, i.e., assuming all of the Cc is bound at the concentrations used (Figure 1). This plot indicates a stoichiometry of 2:1 Cc:Apaf-1 and that the binding constant is much larger than 10⁸ M⁻¹. However, scatter in the data makes it difficult to rule out 1:1 binding with lower affinity ($\sim 10^8 \text{ M}^{-1}$). Kinetic data, however, suggest that the strong binding model is correct (Figure 2).

After the fluorescence polarization titration was complete, a large excess (~1000-fold) of horse heart FeCc was added to compete with ZnCc for Apaf-1 binding. The FeCc displaced the bound ZnCc and a decrease in polarization was observed. However, the rate of dissociation of ZnCc from Apaf-1 is quite slow. The polarization ratio, P/P_{o} , where P_{o} is the initial ZnCc polarization and P is the polarization at each point, decreased for a time period of several hours as the ZnCc dissociated and was replaced by FeCc. From these data, we estimate the half-life

7435

10.1021/ja991235h CCC: \$18.00 © 1999 American Chemical Society Published on Web 07/30/1999

Princeton University.

[‡] University of Texas. (1) Death by Dozens of Cuts, Research News. *Science* **1998**, 280, 32.

⁽⁸⁾ English, A. M.; Cheung, E. Inorg. Chim. Acta 1992, 201, 243.

⁽⁹⁾ Buffer A is 20 mM Hepes, 10 mM KCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, at pH 7.4

⁽¹⁰⁾ The added Apaf-1 was in Buffer A + 20% glycerol. All polarization measurements were corrected for the addition of a 20% glycerol solution. (11) Vanderkooi, J. M.; Adar, F.; Erecinska, M. Eur. J. Biochem. 1976,

^{64, 381.} (12) Creighton, T. E. Protein Structure: A Practical Approach; IRL

Press: New York, 1997; p 253.

for the competition reaction as approximately 1.5 h, and the dissociation rate constant, k_{off} , as approximately 10^{-4} s⁻¹. Furthermore, we observe from the polarization titrations that binding is complete within seconds, so that $k_{on} \ge 10^7 \text{ M}^{-1} \text{ s}^{-1}$. Stopped-flow experiments are underway to better refine this value. Since $K = k_{on}/k_{off}$, $K \ge 10^7 \text{ M}^{-1} \text{ s}^{-1}/10^{-4} \text{ s}^{-1} = 10^{11} \text{ M}^{-1}$. These kinetic results preclude data modeling for a 1:1 Cc:Apaf-1 stoichiometry, which requires weaker ($K \sim 10^8 \text{ M}^{-1}$) binding. We conclude from all the data that Apaf-1 binds two Cc molecules with high affinity ($K \ge 10^{11} \text{ M}^{-1}$). Such strong binding is unusual. Known binding constants for Cc with its mitochondrial binding partners are substantially weaker. For example, the binding constants for Cc binding with both cytochrome *c* peroxidase and cytochrome b_5 are on the order of 10^7 M^{-1} .¹³

A 2:1 Cc:Apaf-1 stoichiometry has interesting structural implications. Cc is believed to bind to the WD-40¹² domain of Apaf-1.⁴ This domain consists of 14 WD-40 repeats.⁴ The sequence of this region suggests that two 7-strand domains may exist, and each may be capable of independent Cc binding.⁴ The

possibility of cooperative Cc binding has potentially interesting implications for signaling, and is currently under investigation.

The observation that binding is as strong as 10^{11} M⁻¹ has interesting implications for the cellular control of apoptosis. If the cytosolic volume of a typical human cell is taken to be approximately 10^{-11} L,¹⁴ then the amount of cytochrome *c* that must be released from the mitochondria for Apaf-1 binding to take place involves only individual molecules. If so, then Cc: Apaf-1 binding is less well described as an equilibrium phenomenon, but rather as a cellular signaling event. In essence every Cc molecule released from the mitochondria could bind to Apaf-1 and presumably trigger caspase-9 activation. The detailed dependence of $K_{\rm B}$ on factors such as pH, ionic strength, and ATP concentration may serve to further modulate this response.

The quantitative determination of a Cc:Apaf-1 binding constant paves the way for future experiments to map out the binding interaction between these two proteins using a library of cytochrome c point mutants, which will be reported in due course.

Acknowledgment. Supported by NIH (G.L.M.), NSF (G.L.M.), and HHMI (X.W.).

JA991235H

⁽¹³⁾ McLendon, G.; Hake, R. Chem. Rev. 1992, 92, 481.

⁽¹⁴⁾ Lehninger, A. L.; Nelson, D. L.; Cox, M. M. Principles of Biochemistry; Worth: New York, 1993; p 23.